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Abstract

Self-training is a powerful approach to deep learning. The key process is to find a
pseudo-label for modeling. However, previous self-training algorithms suffer from
the over-confidence issue brought by the hard labels, even some confidence-related
regularizers cannot comprehensively catch the uncertainty. Therefore, we propose a
new self-training framework to combine uncertainty information of both model and
dataset. Specifically, we propose to use Expectation-Maximization (EM) to smooth
the labels and comprehensively estimate the uncertainty information. We further
design a basis extraction network to estimate the initial basis from the dataset. The
obtained basis with uncertainty can be filtered based on uncertainty information. It
can then be transformed into the real hard label to iteratively update the model and
basis in the retraining process. Experiments on image classification and semantic
segmentation show the advantages of our methods among confidence-aware self-
training algorithms with 1-3 percentage improvement on different datasets.

1 Introduction

Deep neural networks have been developed for many years and achieved great outcomes. However,
its superiority relies on large-scale data labeling. In some real situations, like agriculture, it is difficult
to obtain labeled data. To alleviate the burden of data labeling, many methods like domain adaption
(1; 2; 3; 4; 5), and self-training (6; 7; 8; 9; 10; 11) have been proposed. For example, BERT (12) and
GPT (13; 14; 15), directly leverage a large amount of unlabeled data to pretrain the model. However,
they cannot be generally applied in other areas. Among these methods, self training methods(16; 17)
show promising results and it attracts much attention.

Self training is a semi-supervised learning method (18), which iteratively generates task specific
pseudo-labels using a model trained on some labeled data. It then retrains the model using the
labeled data. However, there are many issues in this bootstrap process, one of them is the noise
in the pseudo-labeled data. Some researchers resolve this problem by learning from noisy labels
(19; 20; 21; 22). It can also be optimized by sample selection (23) or label smoothing (24). However,
none of the previous works focused on data properties. Recently, a novel knowledge distillation (25)
is proposed to distill the large dataset into a small one (26; 27).The intuition of these methods is to
find the key samples, like means in the feature spaces, to capture the data properties. These means
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Figure 1: Uncertainty-aware representations. In the right part of this figure, dashed curves represent
the basis distributions while the blue curve represent the uncertainty-aware representation and
uncertainty-aware labels of the data. The expectation of the labels could be used as the final label and
the variance could be used to evaluate the uncertainty.

Figure 2: One self training round. Pseudo-label generation (a) use EM algorithm to update the
Gaussian basis and the classifier, then it generates some pseudo-labels with uncertainty information
while the classifier is also trained in this stage. Then in model retraining stage (b), an uncertainty-
aware training strategy is used to update the whole model (CNN and classifier).

could also be referred as basis of the data. They can be used to formulate the latent representations of
the data in a probabilistic way using expectation maximization algorithm (28; 29).

Therefore, as shown in figure 1, we propose a probabilistic model to extract uncertainty for self-
training. Concretely, expectation maximization algorithm is adapted to get the probabilistic latent
representations of the data and their corresponding pseudo-label distributions can be obtained. Then
the samples are selected based on the variance of the (pseudo-)label distribution where distributions
with lower variance represent good (pseudo-)labels. Finally, an uncertainty-aware training process is
used to retrain the model using the new dataset where the expectation of distributions becomes the
final pseudo-labels. Overall, our contributions in this paper are:

• Adapt Expectation Maximization algorithm to perform basis transformation on data features.
We use neural networks for expectation maximization process to generate the latent prob-
abilistic representations of the data using base transformation. These representations are
low-rank while keeping the uncertainty information and deprecating the noises.
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• A novel regularizer is used for pseudo-label generation. Variance and classification loss are
combined in the pseudo-label generation process to get the best pseudo-label distributions
which contain comprehensive uncertainty information.

• A basis generation process with basis regularizer is proposed. An attention-like module
(ATT block) is introduced here to extract basis from the dataset or feature space. To make
the basis more robust, we propose a basis regularizer to make all basis orthogonal, which
could lower the rank of final latent representations.

2 Related work

Self-training: Self-training is a wide and meaningful research area in semi-supervised learning
(30; 31; 32), one basic direction in this area is to train a student net using a teacher net (33; 34; 35),
some other works use a pseudo-label-based method for self-training (11). In this paper, we choose to
use pseudo-label-based method while keeping the uncertainty information in the label, an iterative
training framework is proposed according to the self-training paradigm and uncertainty information
to improve the network performance.

Expectation-Maximization and Gaussian Mixture Model: Expectation-maximization (EM) (36) is
to find solutions for latent variables models using likelihood maximization algorithm while Gaussian
mixture model (GMM) (37) is also one kind of EM algorithm with specific constraints. Latent
variables models with GMM could naturally capture the uncertainty information considering the data
properties. In GMM, the data could be represented in the distribution form:

p(x̂n) =

K∑
k=1

znkN (xn|µk,Σk), (1)

where the latent representation x̂n is viewed as a linear superposition of k Gaussian basis
N (xn|µk,Σk) and K is the basis number, znk represents the weight of this linear composition.
In the GMM, znk could be updated in the E step:

znewnk =
N (µnew

k ,Σk)∑K
j=1N (µnew

j ,Σj)
, (2)

Notably, the Σk in the Gaussian basis is set to be identity matrix I in this paper, so the Σ update
process is ignored in our algorithm.

3 Problem definition

In this part, we formally define the uncertainty-aware self-training problem. Given a set of labeled
samples {XL,YL} and a set of unlabeled data XU where XU and XL belong to same domain. Then
the goal is to find a latent representation X̂ and uncertainty-aware pseudo-labels YU by using a CNN
feature extractor and a simple classifier.

As shown in Figure 2, our problem could be solved by alternating the following steps (24):

a) Pseudo-label generation: Given all the data, EM algorithm is used to generate the pseudo-labels
with uncertainty information while the classifier is also trained in this process based on a combined
loss to reduce the variance of pseudo-labels and optimize the classification accuracy for labeled data.

b) Network retraining. Data are sampled from the pseudo-labeled data based on the label variance,
then the sampled data, along with the original labeled data, are used to train the whole classification
network.

4 Uncertainty-aware self training

To generate the pseudo-label for unlabeled data XU , we first use a base extraction net trained on
labeled data to get basis for XL, then these bases could be used as the initialized µ(0) of EM stage to
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Figure 3: Whole training process for basis initialization net. Concretely, we train the model like
classical machine learning training process and add a small module (attention block) to extract the
processed weights which then become the initialized basis of EM algorithm.

speed up the convergence. Notably, as mentioned in related work section, the Σ is set to be identity
matrix and not updated in our algorithm considering a good basis should have identical variance.
After the initialization, the EM algorithm is adapted to update the µ while the prediction net is
simultaneously updated in the EM stage.

Concretely, the details of base extraction net is shown in section 4.1, then two losses which are
used in the EM stage to update the pseudo label generator parameters (classifier in figure 2 a) are
demonstrated in section 4.2. After the definition of losses, the whole EM stage is described in section
4.2.1.

4.1 Basis Extraction net

As shown in figure 3, we demonstrate the generalized basis initialization net. In this paper, we use
classification as an example where the model trained in this stage has 3 components:

• Feature extractor. In fig 3, CNN functions as the feature extractor. The weights we
extracted are from this part.

• Classifier. The fully connected layer could be the classifier in our setting, this part is for the
original machine learning tasks like classification.

• Weight extractor. An additional ATT block is added to extract the informative basis from
the feature space.

Clearly in training process, there are 2 tasks: classification and weights extraction. For classification,
we use classical classification loss - negative log likelihood loss (Lnll). Then for weight extraction
part, we want our weights to be basis with low rank, so they need to be orthogonal:

L2 = W ∗WT − I (3)

Where W is the weight and I is the unity matrix. Therefore, the loss becomes:

Ls1 = Lnll + L2 (4)

In Attention block (ATT block), given a matrix X ∈ RN×d which contains the features of all data
samples, we try to extract the inherent low-rank properties of features by basis extraction. The basis
extraction, says the problem to find the most informative projection of features, can be formally
expressed as

minµ

∥∥X − µZ
∥∥
F
s.t.µTµ = IZ = µTX (5)

where µ ∈ RK×d represents the basis matrix of the latent features. Through the process, the inherent
data structure can be founded. However, as an unsupervised method, the problem is reported easily
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suffer from the model collapse problems. Considering the important label information in classification
problems. then we can modify the problem above into a semi-supervised manner as

minµ

∥∥X − µZ
∥∥
F
+
∥∥ZZT − Y Y T

∥∥
F
+
∥∥µTµ− I

∥∥
F
s.tZ = µTX (6)

where Y donates all the labels. We can solve the problems above with standard gradient decent
methods. Then, after stage I, we generated some basis which the latent space features of data samples
effectively and precisely.

4.2 Pseudo-label generation

Recall that the latent representation should be transformed into the pseudo label using a function fθ.
Given a latent representation x̂n will obey the fallowing distribution:

p(x̂n) =

K∑
k=1

znkN (xn|µk,Σk), (7)

where K is the number of basis, G(µ,Σ) is the final distribution basis representation. Then the
corresponding pseudo label for sample x̂n(m) is ŷn(m) = fθ(x̂n(m)). With the will know re-
parameter trick, distribution p(yn) can be formally expressed as

p(yn) = p(yn|xn)p(xn|ϵ)dxndϵ, ϵ ∼ N (0, I) (8)

where

p(xn|ϵ) =
K∑

k=1

znkµk +Σkϵ (9)

Then, we could easily compute the variance V AR(ŷn) and expectation E(ŷn) using these sampled
pseudo label. For latent representations in XL which have label yn, the loss function for fθ is:

LossL = E(ŷn)− yn (10)

For latent representations in XU which don’t have label, the loss is basically the variance, therefore
the final loss for pseudo label prediction model is:

L = λLossL + (1− λ)V AR(ŷn), (11)

where λ = 1 if the latent representation is from XU and vice versa.

4.2.1 Expectation-Maximization

Now we can get the ideally orthogonal base vectors from weights and use them as initialized µ in the
base generation block and compute the loss. Then in this section, we formally define the adapted EM
process. At first, we need to update znk:

znewnk =
K(xn, µk)∑K
j=1K(xn, µj)

, (12)

where K(a, b) is a kernel function to evaluate the similarity between a and b. Then in the algorithm,
the t-th Z could be formulated as:

z(t) = softmax(λX(µ(t−1))
T
), (13)

where λ is manually set to control Z distribution. Then in the M step (likelihood maximization), we
update the µ based on the weighted summation of X to make them in one space. Then the update
process in t-th iteration could be formulated as:

µ
(t)
k =

z
(t)
nkxn∑N

m=1 z
(t)
mk

(14)
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After T iterations, we could get the final basis µk(T ),Σk(T ) and the prediction model θk(T ). The
generated pseudo label for each sample is a distribution, which can be formulated as:

yn = fθ(xn), (15)
where fθ is a linear transformation, so distribution of yn could be easily calculated. The whole
process of pseudo-label generation is summarized in algorithm 1.

Algorithm 1: Pseudo-label generation
Input :XL, XU , YL, fθ
Output :µk(T ),Σk(T ), θk(T )
Initialize µk(0),Σk(0), θ(0)
for t← 1 to T do

update znk(t) (eq 13)
compute x̂n(t) (eq 10)
compute pseudo-label yn (eq 15)
compute loss function (eq 11)
update θ(t) using back propagation
update µk(t) (eq 14)

return

4.3 Network retraining

Because in section 4.1, we define the problem as a classification task, so in this part we simply use
classification as our final task. Considering we have the distribution for pseudo-labels, there are
mainly two steps in the retraining part - sample selection and model retraining.

4.3.1 Sample selection

After pseudo-label generation process, the generated pseudo-labels are formulated in a distribution
format (Gaussian form) shown in equation 8 which contains variance and mean information. Then
for classification task, a class-dependent selection (49) could be performed to construct a dataset with
hard labels DS,U = {xu,s ∈ Su,c, yu}. Here, Su,c ∈ XU is constructed based on the score rank of
each sample, if the sample’s pseudo-label has higher variance, then it’s more likely to be discarded.
For yu, one can simply use its mean as its hard pseudo label, but here we want to accurately model
the uncertainty information. Therefore, we randomly sample hard labels from the pseudo-label
distribution to incorporate the uncertainty information encoded in the distribution.

4.3.2 Uncertainty aware retraining

After the sample selection, a retraining dataset is derived as Dr = {XL, YL}
⋃
{xu,s, yu}, then for

the retraining part, the final goal is to minimize following loss:

minW LL +
LU

V ar(y)
(16)

Method A→W D→W W→D A→D D→A W→A Mean
ResNet-50 (38) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DAN (39) 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
RTN (40) 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6

DANN (41) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA (42) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9

JAN (43) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
GTA (44) 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5

MRKLD+LRENT (45) 89.4±0.7 98.9±0.4 100±0.0 88.7±0.8 72.6±0.7 70.9±0.5 86.8
[HTML]EFEFEF Ours 92.2±0.5 98.2±0.3 99.6±0.4 87.2±0.5 72.8±0.3 72.4±0.4 87.1

Table 1: Comparison on Office-31 experiments
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Method Aero Bike Bus Car Horse Knife Motor Person Plant Skateboard Train Truck Mean
Source (46) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81 26.5 73.5 8.5 52.4
MMD (39) 87.1 63 76.5 42 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
DANN (41) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
ENT (32) 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16 57
MCD (47) 87 60.9 83.7 64 88.9 79.6 84.7 76.9 88.6 40.3 83 25.8 71.9
ADR (46) 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60 85.5 32.3 74.8

SimNet-Res152(48) 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9
GTA-Res152 (44) - - - - - - - - - - - - 77.1

MRKLD+LRENT (45) 88.0 79.2 61.0 60.0 87.5 81.4 86.3 78.8 85.6 86.6 73.9 68.8 78.1
[HTML]EFEFEF Ours 89.1 81.7 82.1 57.7 83.2 79.7 83.9 77.2 86.2 82.7 83.8 65.9 79.4

Table 2: Comparison on VisDA17 experiments

Method Backbone Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU
Source 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5 0 5 1.4 21.7

CyCADA (3) -2*DRN-26 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5
Source 36.4 14.2 67.4 16.4 12 20.1 8.7 0.7 69.8 13.3 56.9 37 0.4 53.6 10.6 3.2 0.2 0.9 0 22.2

MCD (47) -2*DRN-105 90.3 31 78.5 19.7 17.3 28.6 30.9 16.1 83.7 30 69.1 58.5 19.6 81.5 23.8 30 5.7 25.7 14.3 39.7
Source 75.8 16.8 77.2 12.5 21 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36 36.6

AdaptSegNet (50) -2*DeepLabv2 86.5 36 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
AdvEnt (51) DeepLabv2 89.4 33.1 81 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

Source - - - - - - - - - - - - - - - - - - - 29.2
FCAN (52) -2*DeepLabv2 - - - - - - - - - - - - - - - - - - - 46.6

[HTML]EFEFEF Ours [HTML]EFEFEFDeepLabv2 87 47.7 80.3 25.9 26.3 47.9 34.7 29 80.9 45.7 80.3 60 29.2 81.7 37.9 47.5 37.2 29.8 47.7 50.4

Table 3: Adaptation results of experiments transferring from GTA5 to Cityscapes.

Where W is the model parameter, LL and LU represent the task loss for labeled data and unlabeled
data respectively, here in this classification example, they represent same classification loss like cross
entropy. V ar(y) represents the sample uncertainty, for samples x ∈ XU , variance is same to the
variance in the distribution to catch the uncertainty information of teacher model. In this setting,
samples with higher variance, which basically means that the previous model is not confident on this
sample, have lower weights in the back propagation process of training. After the retraining, one
round shown in figure 2 is completed. Then we simply repeat the whole process until the ideal results
are derived.

5 Experiment

In this section, we demonstrate the advantages of proposed methods by comparing the performance
of proposed methods with the SOTA confidence-aware self-training strategy on 2 tasks - image
classification and image segmentation. To make the results comparative, we basically follow the
settings in (45) which achieves SOTA results in confidence-aware self-training domain, details will
be illustrated in following sections.

5.1 Dataset and evaluation metric

5.1.1 Image classification.

For domain adaption in image classification task, VisDA17 (53) and Office-31 (54) are used to
evaluate the algorithm performance. In VisDA17, there are 12 classes with 152, 409 virtual images
for training while 55, 400 real images from MS-COCO (55) are target dataset. For Office-31, 31
classes collected from Amazon(A, 2817 images), Webcam(W, 795 images) and DSLR(D, 498 images)
domains are included. We strictly follow the settings in (54; 44; 45) which evaluate the domain
adaption performance on A→W,D →W,W → D,A→ D,D → A,W → A. For evaluation, we
simply use the accuracy for each class and mean accuracy across all classes as the evaluation metric.

Method Backbone Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU*
Source 2*DRN-105 14.9 11.4 58.7 1.9 0 24.1 1.2 6 68.8 76 54.3 7.1 34.2 15 0.8 0 23.4 26.8
MCD (47) 84.8 43.6 79 3.9 0.2 29.1 7.2 5.5 83.8 83.1 51 11.7 79.9 27.2 6.2 0 37.3 43.5
Source 2*DeepLabv2 55.6 23.8 74.6 - - - 6.1 12.1 74.8 79 55.3 19.1 39.6 23.3 13.7 25 - 38.6
AdaptSegNet(50) 84.3 42.7 77.5 - - - 4.7 7 77.9 82.5 54.3 21 72.3 32.2 18.9 32.3 - 46.7
Source 2*ResNet-38 32.6 21.5 46.5 4.8 0.1 26.5 14.8 13.1 70.8 60.3 56.6 3.5 74.1 20.4 8.9 13.1 29.2 33.6
CBST (45) 53.6 23.7 75 12.5 0.3 36.4 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 42.5 48.4
AdvEnt (51) DeepLabv2 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33 41.2 48
Source 2*DeepLabv2 64.3 21.3 73.1 2.4 1.1 31.4 7 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3
Ours 68 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9

Table 4: Adaptation results of experiments transferring from SYNTHIA to Cityscapes.
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5.1.2 Semantic segmentation

For domain adaption in image segmentation tasks, 2 virtual datasets GTA5 (56), SYNTHIA (57) and
1 real dataset Cityscapes (58) are used to evaluate the performance of proposed method. Concretely,
GTA5 contains 24, 966 images based on the game GTA5, SYNTHIA-RAND-CITYSCAPES (subset
of SYNTHIA) has 9400 images. For the experiment setup, we also strictly follow (3; 50; 45) which
use Cityscapes as target domain and view virtual datasets (GTA5 and CITYSCAPES) as training
domain. For evaluation, the Intersection over Union (IoU) is used to measure the performance of
models where.

5.2 Experiment setup

To make our results comparable with current SOTA confidence-aware method, we adapt the settings
in (45). Besides, all the training process is performed on 4 Tesla V100 GPUs which have 32GB
memory.

Image Classification: ResNet101/ ResNet-50 (38) are used as backbones, which are pretrained based
on ImageNet (59). Then in source domain, we fine-tune the model using SGD while the learning
rate is 1× 10−4, weight decay is set to be 5× 10−5, momentum is 0.8 and the batch size is 32. In
the self-training round, the parameters are same except for the different learning rates which are
5× 10−4.

Image Segmentation: In image segmentation part, we mainly use the older DeepLab v2 (60) as
backbone to align with previous results. DeepLab v2 is first pretrained on ImageNet and then
finetuned on source domain using SGD. Here we set learning rate as 5× 10−4, weight decay is set to
be 1× 10−5, momentum is 0.9, the batch size is 8 while the patch size is 512× 1024. In self-training,
we basically run 3 rounds which has 4 retraining epochs.

5.3 Experiment results

Comparison on image classification. As shown in table 1 and table 2, compared with previous SOTA
result in confidence-aware self-training and other self-training algorithms, although our algorithm
does not achieve best performance in all sub-tasks, the mean results (87.1 and 79.4 for Office-31 and
VisDA17 respectively) achieves SOTA while our results (derivations and means) are obtained from 5
runs of the experiment.

Comparison on image segmentation.As shown in table 3 and 4, in semantic segmentation task, our
results of average IoU (mIoU) achieves SOTA among confidence-aware self-training algorithms.

6 Conclusion and future work

In this paper, we propose a new confidence-aware self-training framework and compare our algorithm
with current SOTA results of confidence-aware self-training which proves that our pseudo-label could
better catch the uncertainty information and thus alleviate the over-confident issue in self-training.
Furthermore, the idea underlying our method could be used in many self-training related tasks while
the over-confidence is a common question faced by most self-training algorithms.
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A Appendix

A.1 Basis extraction illustration

In this paper, an attention-like module is added (ATT block in figure 3) to extract the basis from
features, which are then used to be the initialized basis in Gaussian Mixture Model. Before demon-
strating the details of our pseudo-label generation process, we first illustrate the intuition of using
’weights’ as initialized basis.

A.1.1 Logistic regression and data information

A small dataset could contain the information of a huge dataset while this ’small dataset’ could be
viewed as the basis of original dataset. In this section, we’ll explain why this could happen based on
logistic regression, which is a simple machine learning model and can be easily understood.

In logistic regression,

Assuming the labels are [0, 1], the loss function could be written as follows without considering the
differentiation:

L(w, x) =

N∑
i=1

[h (w, xi)− yi]
2 (17)

This could be seen as a specific example of attention-based model, which only has one kind of weight.
Now, assuming we have already gained the best weight w0 and we make it the only data sample:

xi = w0, i = 1 (18)

If the label of xi is 1, then the new data sample becomes xi, 1. Then, if we retrain the logistic
model using only this one sample, when the model converges, we could find the new weight w′, and
apparently w′ = w0. Because in equation 17, we just change N to 0, and only when w′ = w0, the
loss would be 0.

The above result means that the model trained on only one synthesized data sample could achieve
similar or even same performance as the model trained on the original whole dataset. Because the
weight of the logistic model could be seen as the projection of the original data, while the data whose
label is 1 should have more correlation with weight (according to the loss, h(w,x) could be seen as a
correlation equation).

A.1.2 Support Vector Machine (SVM) and base

SVM could also be helpful in understanding our idea.

In SVM, the most important data points are called support vectors, while these vectors are also data
in initial dataset. And the loss function is:

L(α) =

N∑
i=1

∣∣∣∣∣∣sgn
 N∑
j=1

αjyjΦ (xj , xi)

− yi

∣∣∣∣∣∣
2

+ λ

N∑
i=1

αi (19)

Now, let’s assume a self attention model with 4 weights w1, w2, w3, w4:

yi = sgn

[
K∑

k=1

h (wh, xi)βb

]
(20)

The loss function then becomes:

L(W ) =

N∑
i=1

[
sgn

[
K∑

k=1

h (wk, xi)βk

]
− yi

]2

(21)
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Apparently, two loss functions (equation 19 and 21) are similar, the only difference is the optimized
parameter. In SVM, we need to find the support vectors while in attention model, we need to find the
optimized matrix. Then if you come back to the logistic part, you could find that in logistic regression,
we want to find the basis (weights in previous section), these bases are called support vectors in SVM.

Therefore, using weights to be the initialized basis is a reasonable direction while these bases could
contain the information inside the original dataset or in the feature space. However, the uncertainty
information is the thing we try to extract in this paper. Therefore, GMM is used to represent the data
uncertainty information while EM is used to optimize the result. Following sections will illustrate
technical details of this idea.
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